linbox
examples/rank.C

Rank of sparse matrix over Z or Zp.

/*
* examples/rank.C
*
* Copyright (C) 2005, 2010 D. Saunders, J-G Dumas
*
* ========LICENCE========
* This file is part of the library LinBox.
*
* LinBox is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
* ========LICENCE========
*/
#include <iostream>
#include <sstream>
#include <givaro/givrational.h>
#include <linbox/field/gf2.h>
#include <linbox/blackbox/zero-one.h>
#include <linbox/solutions/rank.h>
#include <linbox/util/matrix-stream.h>
#define SP_STOR SparseMatrixFormat::SparseSeq
using namespace LinBox;
int main (int argc, char **argv)
{
commentator().setMaxDetailLevel (-1);
commentator().setMaxDepth (-1);
commentator().setReportStream (std::cerr);
if (argc < 2 || argc > 3) {
std::cerr << "Usage: rank <matrix-file-in-supported-format> [<p>]" << std::endl;
return -1;
}
std::ifstream input (argv[1]);
if (!input) {
std::cerr << "Error opening matrix file: " << argv[1] << std::endl;
return -1;
}
size_t r;
Givaro::QField<Givaro::Rational> QQ;
LinBox::Timer tim ; tim.clear() ; tim.start();
SparseMatrix<Givaro::QField<Givaro::Rational>, SP_STOR> A ( ms );
tim.stop();
std::cout << "matrix is " << A.rowdim() << " by " << A.coldim() << " (" << tim << ")" << std::endl;
tim.clear() ; tim.start();
if (argc == 2) { // rank over the rational numbers.
/* We could pick a random prime and work mod that prime, But
* the point here is that the rank function in solutions/
* handles that issue. Our matrix here is an integer or
* rational matrix and our concept is that we are getting the
* rank of that matrix by some blackbox magic inside linbox.
*/
LinBox::rank (r, A);
}
if (argc == 3) { // rank mod a prime
uint32_t q = atoi(argv[2]);
if (q == 0) {
std::cerr << "second argument should be a non-zero integer or missing\n";
return -1;
}
typedef Givaro::Modular<double> Field;
Field F(q);
if (q > F.maxCardinality()) {
std::cerr << "your number is too big for this field" << std::endl;
return -1 ;
}
SparseMatrix<Field, SP_STOR > B (F, A.rowdim(), A.coldim());// modular image of A
MatrixHom::map(B, A);
tim.stop();
std::cout << "matrix is " << B.rowdim() << " by " << B.coldim() <<" (time for map: "<< tim << ")" << std::endl;
tim.clear();tim.start();
//if (B.rowdim() <= 20 && B.coldim() <= 20) B.write(std::cout) << std::endl;
// Using the adaptive LinBox Solution
}
tim.stop();
std::cout << "Rank is " << r << " (" << tim << " )" << std::endl;
return 0;
}
// Local Variables:
// mode: C++
// tab-width: 4
// indent-tabs-mode: nil
// c-basic-offset: 4
// End:
// vim:sts=4:sw=4:ts=4:et:sr:cino=>s,f0,{0,g0,(0,\:0,t0,+0,=s