linbox
|
Repository of functions for rank modulo a prime power by elimination on sparse matrices. More...
#include <smith-form-sparseelim-local.h>
Public Member Functions | |
PowerGaussDomain (const Field &F) | |
The field parameter is the domain over which to perform computations. | |
template<class Modulo , class Modulo2 , class Modulo3 > | |
Modulo & | MY_Zpz_inv_classic (Modulo &u1, const Modulo2 a, const Modulo3 _p) const |
const Field & | field () const |
accessor for the field of computation | |
template<class _Matrix , class Perm > | |
size_t & | QLUPin (size_t &rank, Element &determinant, Perm &Q, _Matrix &L, _Matrix &U, Perm &P, size_t Ni, size_t Nj) const |
Sparse in place Gaussian elimination with reordering to reduce fill-in. More... | |
template<class _Matrix > | |
size_t & | NoReordering (size_t &rank, Element &determinant, _Matrix &LigneA, size_t Ni, size_t Nj) const |
Sparse Gaussian elimination without reordering. More... | |
template<class _Matrix > | |
size_t & | LUin (size_t &rank, _Matrix &A) const |
Dense in place LU factorization without reordering. More... | |
template<class _Matrix > | |
size_t & | upperin (size_t &rank, _Matrix &A) const |
Dense in place Gaussian elimination without reordering. More... | |
rank | |
Callers of the different rank routines\ -/ The "in" suffix indicates in place computation\ -/ Without Ni, Nj, the _Matrix parameter must be a vector of sparse row vectors, NOT storing any zero. \ -/ Calls rankinLinearPivoting (by default) or rankinNoReordering | |
template<class _Matrix > | |
size_t & | rankInPlace (size_t &rank, _Matrix &A, PivotStrategy reord=PivotStrategy::Linear) const |
template<class _Matrix > | |
size_t & | rankInPlace (size_t &rank, _Matrix &A, size_t Ni, size_t Nj, PivotStrategy reord=PivotStrategy::Linear) const |
template<class _Matrix > | |
size_t & | rank (size_t &rank, const _Matrix &A, PivotStrategy reord=PivotStrategy::Linear) const |
template<class _Matrix > | |
size_t & | rank (size_t &rank, const _Matrix &A, size_t Ni, size_t Nj, PivotStrategy reord=PivotStrategy::Linear) const |
det | |
Callers of the different determinant routines\ -/ The "in" suffix indicates in place computation\ -/ Without Ni, Nj, the _Matrix parameter must be a vector of sparse row vectors, NOT storing any zero. \ -/ Calls LinearPivoting (by default) or NoReordering | |
template<class _Matrix > | |
Element & | detInPlace (Element &determinant, _Matrix &A, PivotStrategy reord=PivotStrategy::Linear) const |
template<class _Matrix > | |
Element & | detInPlace (Element &determinant, _Matrix &A, size_t Ni, size_t Nj, PivotStrategy reord=PivotStrategy::Linear) const |
template<class _Matrix > | |
Element & | det (Element &determinant, const _Matrix &A, PivotStrategy reord=PivotStrategy::Linear) const |
template<class _Matrix > | |
Element & | det (Element &determinant, const _Matrix &A, size_t Ni, size_t Nj, PivotStrategy reord=PivotStrategy::Linear) const |
Repository of functions for rank modulo a prime power by elimination on sparse matrices.
|
inline |
clang complains for examples/smith.C and examples/smithvalence.C
|
inlineinherited |
Sparse in place Gaussian elimination with reordering to reduce fill-in.
Pivots are chosen in sparsest column of sparsest row. This runs in linear overhead. It is similar in spirit but different from Markovitz' approach.
The _Matrix parameter must meet the LinBox sparse matrix interface. [check details]. The computedet indicates whether the algorithm must compute the determionant as it goes
|
inlineinherited |
Sparse Gaussian elimination without reordering.
Gaussian elimination is done on a copy of the matrix. Using : SparseFindPivot eliminate
Requirements : SLA is an array of sparse rows WARNING : NOT IN PLACE, THERE IS A COPY. Without reordering (Pivot is first non-zero in row)
|
inlineinherited |
Dense in place LU factorization without reordering.
Using : FindPivot and LU
|
inlineinherited |
Dense in place Gaussian elimination without reordering.
Using : FindPivot and LU