|
linbox
|
PLUQ factorisation. More...
#include <factorized-matrix.h>
Collaboration diagram for PLUQMatrix< Field >:Public Member Functions | |
| template<class _Rep > | |
| PLUQMatrix (const BlasMatrix< Field, _Rep > &A) | |
| Contruction of PLUQ factorization of A (making a copy of A) | |
| template<class _Rep > | |
| PLUQMatrix (BlasMatrix< Field, _Rep > &A) | |
| Contruction of PLUQ factorization of A (in-place in A) | |
| template<class _Rep > | |
| PLUQMatrix (const BlasMatrix< Field, _Rep > &A, BlasPermutation< size_t > &P, BlasPermutation< size_t > &Q) | |
| Contruction of PLUQ factorization of A (making a copy of A). More... | |
| template<class _Rep > | |
| PLUQMatrix (BlasMatrix< Field, _Rep > &A, BlasPermutation< size_t > &P, BlasPermutation< size_t > &Q) | |
| Contruction of PLUQ factorization of A (in-place in A). More... | |
| ~PLUQMatrix () | |
| destructor. | |
| Field & | field () |
| get the field on which the factorization is done | |
| size_t | rowdim () const |
| get row dimension | |
| size_t | coldim () const |
| get column dimension | |
| size_t | getRank () const |
| get the rank of matrix | |
| const BlasPermutation< size_t > & | getQ () const |
| get the permutation Q. More... | |
| BlasPermutation< size_t > & | getQ (BlasPermutation< size_t > &Q) const |
| get the permutation Q. More... | |
| const BlasPermutation< size_t > & | getP () const |
Get the transpose of the permutation P. More... | |
| BlasPermutation< size_t > & | getP (BlasPermutation< size_t > &PT) const |
| get the permutation P^T. More... | |
| template<class _Rep > | |
| TriangularBlasMatrix< Field, _Rep > & | getL (TriangularBlasMatrix< Field, _Rep > &L, bool _QLUP=false) const |
get the Matrix L. More... | |
| template<class _Rep > | |
| TriangularBlasMatrix< Field, _Rep > & | getU (TriangularBlasMatrix< Field, _Rep > &U) const |
get the matrix U. More... | |
| Element * | getPointer () const |
| get the matrix S. More... | |
| template<class Operand > | |
| Operand & | left_solve (Operand &X, const Operand &B) const |
| Solvers with matrices or vectors Operand can be a BlasMatrix<Field,_Rep> or a std::vector<Element> | |
| template<class Operand > | |
| Operand & | left_solve (Operand &B) const |
| Solvers with matrices or vectors Operand can be a BlasMatrix<Field,_Rep> or a std::vector<Element> | |
| template<class Operand > | |
| Operand & | right_solve (Operand &X, const Operand &B) const |
| Solvers with matrices or vectors Operand can be a BlasMatrix<Field,_Rep> or a std::vector<Element> | |
| template<class Operand > | |
| Operand & | right_solve (Operand &B) const |
| Solvers with matrices or vectors Operand can be a BlasMatrix<Field,_Rep> or a std::vector<Element> | |
| template<class Operand > | |
| Operand & | left_Lsolve (Operand &X, const Operand &B) const |
| Solvers with matrices or vectors Operand can be a BlasMatrix<Field,_Rep> or a std::vector<Element> | |
| template<class Operand > | |
| Operand & | left_Lsolve (Operand &B) const |
| Solvers with matrices or vectors Operand can be a BlasMatrix<Field,_Rep> or a std::vector<Element> | |
| template<class Operand > | |
| Operand & | right_Lsolve (Operand &X, const Operand &B) const |
| Solvers with matrices or vectors Operand can be a BlasMatrix<Field,_Rep> or a std::vector<Element> | |
| template<class Operand > | |
| Operand & | right_Lsolve (Operand &B) const |
| Solvers with matrices or vectors Operand can be a BlasMatrix<Field,_Rep> or a std::vector<Element> | |
| template<class Operand > | |
| Operand & | left_Usolve (Operand &X, const Operand &B) const |
| Solvers with matrices or vectors Operand can be a BlasMatrix<Field,_Rep> or a std::vector<Element> | |
| template<class Operand > | |
| Operand & | rleft_Usolve (Operand &B) const |
| Solvers with matrices or vectors Operand can be a BlasMatrix<Field,_Rep> or a std::vector<Element> | |
| template<class Operand > | |
| Operand & | right_Usolve (Operand &X, const Operand &B) const |
| Solvers with matrices or vectors Operand can be a BlasMatrix<Field,_Rep> or a std::vector<Element> | |
| template<class Operand > | |
| Operand & | right_Usolve (Operand &B) const |
| Solvers with matrices or vectors Operand can be a BlasMatrix<Field,_Rep> or a std::vector<Element> | |
PLUQ factorisation.
This is a class to ease the use LU factorisation (see FFPACK::PLUQ
The factorisation is
with L lower unit triangular, U upper non-unit triangular, P and Q permutations.
There are two kind of contructors (with and without permutations) and they build a PLUQ factorisation of a BlasMatrix/ a finite field. There are methods for retrieving BlasBlackbox onP L,U and Q matrices and methods for solving systems.
| PLUQMatrix | ( | const BlasMatrix< Field, _Rep > & | A, |
| BlasPermutation< size_t > & | P, | ||
| BlasPermutation< size_t > & | Q | ||
| ) |
Contruction of PLUQ factorization of A (making a copy of A).
P and Q are arguments !
| PLUQMatrix | ( | BlasMatrix< Field, _Rep > & | A, |
| BlasPermutation< size_t > & | P, | ||
| BlasPermutation< size_t > & | Q | ||
| ) |
| const BlasPermutation< size_t > & getQ | ( | ) | const |
get the permutation Q.
(no copy)
| BlasPermutation< size_t > & getQ | ( | BlasPermutation< size_t > & | Q | ) | const |
get the permutation Q.
(copy)
| const BlasPermutation< size_t > & getP | ( | ) | const |
Get the transpose of the permutation P.
P itself! (because it is more difficult to compute) If needed, P can be obtained as a TransposedBlasMatrix from the return value. One reason this confusion exists is that left-multiplying by a permuation matrix corresponds to a row permuation
, while right-multiplying by the same matrix corresponds to the inverse column permutation
! Usually this is handled intelligently (eg by applyP) but you must be careful with getP(). | BlasPermutation< size_t > & getP | ( | BlasPermutation< size_t > & | PT | ) | const |
|
inline |
get the Matrix L.
| [out] | L | |
| _QLUP | if true then L form QLUP decomposition, else L is form PLUQ decomposition. |
L has unit diagonal
|
inline |
get the matrix U.
U has non-unit diagonal | Field::Element * getPointer | ( | ) | const |
get the matrix S.
from the LSP factorization of A deduced from PLUQ)
1.8.13